BACKPAPER EXAMINATION M. MATH I Year, I SEMESTER 2005-2006 COMPLEX ANALYSIS

Max. Marks:100 DURATION: 3hrs 1. Prove that $\phi(z) = \frac{z-2}{2z+i}$ maps the circle $\{z : |z - \frac{1}{2}| = \frac{1}{2}\}$ onto a circle (No need to specify the centre and radius; you may use any theorem proved in class) [10]

2. Prove that (the so-called Riemann Zeta function) $\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}$ is holomorphic in $\{z : \operatorname{Re}(z) > 1\}$ [10]

3. Say that a region Ω has property EL (existence of lagarithms) if every holomorphic function $f: \Omega \to \mathbb{C} \setminus \{0\}$ has a holomorphic logarithm. Prove that the union of two regions with property EL need not have property EL even if it is a region. What happens if you assume that the intersection of the two regions is connected? [15]

4. If $u(x,y) = e^x \sin(y)$, find a function v(x,y) on \mathbb{R}^2 such that u(x,y) + iv(x,y) is an entire function of x + iy. [Show how you arrived at v]. [15]

5. Show using contour integration that $\int_{-\infty}^{\infty} \frac{e^{itx}}{1+x^2} dx = \pi e^{-|t|}$ for any real

number t. [15]

6. Let (X, \mathcal{F}, μ) be a finite measure space and Ω an open set in \mathbb{C} . Let $\phi: X \to \mathbb{C}$ be a measurable function whose range is disjoint from Ω . If $f(z) = \int_{X} \frac{1}{\phi-z} d\mu$ show that $f \in H(\Omega)$. [15]

7. Let D be an open disk whose closure D is contained in a region Ω . If $f(H(\Omega)), |f|$ is a constant on the boundary of D and f has no zeros in D, show that f is a constant. [hint: use Maximum Modulus Principle] [10]

8. Let Ω be a simply connected region and $f: \Omega \to \mathbb{C} \setminus \{0\}$ be holomorphic. Show that for any positive integer *n* there exists a holomorphic function *g* on Ω such that $g^n = f$ on Ω . How many such functions are there? [10]